Entwicklung eines Messsystems für die Leistungsdiagnostik im Sporttauchen

vorgelegt von
Tobias Dräger

aus Reinhausen
Köln 2007
Hierdurch versichere ich an Eides statt: Ich habe diese Dissertationsarbeit selbständig und nur unter Benutzung der angegebenen Quellen angefertigt; sie hat noch keiner anderen Stelle zur Prüfung vorgelegen. Wörtlich übernommene Textstellen, auch Einzelsätze oder Teile davon, sind als Zitate kenntlich gemacht worden.

Tobias Dräger
Inhaltsverzeichnis

Übersicht der wichtigsten Abkürzungen

1. Einleitung
 1.1 Leistungsdiagnostik beim Tauchen

2. Grundlagen der Tauchgerätetechnik
 2.1 Offene Tauchgeräte
 2.2 Kreislaufftauchgeräte
 2.2.1 Sauerstoffkreislaufgerät
 2.2.2 Geschlossenes Kreislaufgerät
 2.2.3 Halbgeschlossenes Kreislaufgerät

3. Systementwicklung
 3.1 Anforderungen an das Messsystem
 3.1.1 Technische Eigenschaften
 3.1.2 Handhabung
 3.1.3 Umweltbedingungen
 3.2 Schwimmbrett „Tattle“
 3.3 Methode der VO₂-Messung
 3.4 Methode der Ventilations- und Atemwiderstandsmessung
 3.5 Kalibrierungsmessung der Ventilation und des Atemwiderstands

4. Erprobung unter praxisnahen Bedingungen
 4.1 Allgemeine Information zur Durchführung
 4.2 Statistik
 4.3 Versuchsdurchführung der VO₂- und Herzfrequenzmessung
 4.4 Versuchsdurchführung der Ventilationsmessungen und Atemwiderstandsmessung
 4.5 Messergebnisse der Erprobung
 4.5.1 VO₂- und Herzfrequenzmessung
 4.5.2 Ventilations- und Atemwiderstandsmessung
 4.6 Diskussion der Messergebnisse
5. Methodenkritik und neue Lösungsansätze.......................... 49
 5.1 Schleppboje „Arcas“... 50
 5.2 Head Up Display... 53
 5.3 MT 25.. 54
6. Anwendungsrelevanz des Messsystems.......................... 57
7. Zusammenfassung ... 60
Literaturverzeichnis ... IV
Abbildungsverzeichnis.. X
Tabellenverzeichnis... XIII
Lebenslauf ... XIV
Übersicht der wichtigsten Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff/Stichwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATPS</td>
<td>Ambient Temperature, Pressure, Saturated</td>
</tr>
<tr>
<td>AZ</td>
<td>Atemzug/Atemzüge</td>
</tr>
<tr>
<td>AZV</td>
<td>Atemzugvolumen</td>
</tr>
<tr>
<td>AMV</td>
<td>Atemminutenvolumen</td>
</tr>
<tr>
<td>BTPS</td>
<td>Body Temperature, Pressure, Saturated</td>
</tr>
<tr>
<td>EN</td>
<td>Europäische Norm</td>
</tr>
<tr>
<td>Af</td>
<td>Atemfrequenz</td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz/-en</td>
</tr>
<tr>
<td>HRV</td>
<td>Herzfrequenzvariabilität</td>
</tr>
<tr>
<td>HUD</td>
<td>Head up Display</td>
</tr>
<tr>
<td>HZV</td>
<td>Herzzeitvolumen</td>
</tr>
<tr>
<td>ID</td>
<td>Versuchsidentitäts-Nr.</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert ((\bar{X}))</td>
</tr>
<tr>
<td>S(_0)</td>
<td>Sensor 0</td>
</tr>
<tr>
<td>S(_1)</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>S(_2)</td>
<td>Sensor 2</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SE</td>
<td>Standardfehler</td>
</tr>
<tr>
<td>SMT</td>
<td>Selbstmischendes, halbgeschlossenes Kreislaupfutauchrgerät</td>
</tr>
<tr>
<td>V</td>
<td>Volumenfluss</td>
</tr>
<tr>
<td>v</td>
<td>Geschwindigkeit</td>
</tr>
<tr>
<td>v(_i)</td>
<td>Ist-Geschwindigkeit</td>
</tr>
<tr>
<td>v(_s)</td>
<td>Soll-Geschwindigkeit</td>
</tr>
<tr>
<td>V</td>
<td>Atemstromstärke/Volumenstrom</td>
</tr>
<tr>
<td>V(_E)</td>
<td>exspiratorisches Atemzeitvolumen</td>
</tr>
<tr>
<td>V(_i)</td>
<td>inspiratorisches Atemzeitvolumen</td>
</tr>
<tr>
<td>V(_ex)</td>
<td>exspiratorisches Atemzugvolumen</td>
</tr>
<tr>
<td>V(_in)</td>
<td>inspiratorisches Atemzugvolumen</td>
</tr>
</tbody>
</table>
1. Einleitung

Einleitung

Diese Dissertation hatte das Ziel, ein Messsystem zu entwickeln, mit dem klassische Parameter wie Herzfrequenz (HF), Sauerstoffaufnahme (VO₂) und Ventilation während eines Leistungstest unter Wasser aufgezeichnet werden können, zur Beurteilung der individuellen Leistungsfähigkeit. Das Messsystem soll den Anforderungen eines Feldstufentests gerecht werden und eine Leistungsdiagnostik unter praxisnahen Bedingungen ermöglichen.
Einleitung

1.1 Leistungsdiagnostik beim Tauchen

Im Wasser ist die Leistungsfähigkeit eines Tauchers durch die besonderen Umweltbedingungen beeinflusst. Bei der Beurteilung von Messergebnissen sind beim Tauchen die physiologischen Anpassungsvorgänge unter Wasser zu beachten, wie z.B. eine erschwerte Atemarbeit, die entsprechend der erhöhten Dichte des Atemgases in der Tiefe aufgewendet wird (Dwyer et al. 1977, Morrison, Butt 1972). Bei Betrachtung der VO₂ ist zu berücksichtigen, dass ein Sporttaucher die Arme nur in geringem Umfang einsetzt und somit geringere VO₂ Werte zu erwarten sind im Verhältnis zu Tätigkeiten wo die Arme ebenfalls genutzt werden (Bell 1979). Donald et al. (1954) untersuchten bei verschiedenen nicht standardisierten Belastungen die VO₂ Aufnahme von Tauchern die mit Flossen ausgerüstet waren und solche die

3
Bleischuhe trugen, um den Gasbedarf zu berechnen. Die Taucher mit Bleischuhen hatten eine geringere VO$_2$ als die, die Flossen trugen. Begründet wurde dieser Zusammenhang mit der größeren Muskelmasse der Beine, die bei den Tauchern mit Bleischuhen passiv war.

Im Folgenden werden einige ausgewählte Arbeitsgruppen betrachtet, die sich mit einer tauchsportspezifischen Leistungsdiagnostik beschäftigt haben.

Pilmanis et al. (1977) entwickelten ein Unterwasserergometer. Es handelte sich dabei um ein Brett, welches der Taucher vor sich herschiebt und gegen dessen Widerstand er arbeitet. Das Brett war auf Federn gelagert und die Leistung ergab sich aus dem Produkt der Schwimmgeschwindigkeit und dem Widerstand des Brettes (d.h. der Kompression der Federn).

Niklas et al. (1993) stellten ein Verfahren und eine Vorrichtung zur tätigkeitsspezifischen Leistungsdiagnostik für Schwimmtaucher vor, bei dem der Proband gegen ein Seilzugergometer schwimmen muss. Der Schwimmtest gleicht einem Test, den Niklas et al. (1988) mit Schwimmern durchgeführt hat. Im Schwimmkanal mit einer Tiefe von 1,3 m taucht der Proband mit der kompletten Tauchausrüstung.
Einleitung

Unter Zusatzkraftbeaufschlagung werden bei festgelegten Strömungsgeschwindigkeiten metabolische Messgrößen ermittelt und die Leistung bestimmt. Ein Wirkungsgrad von 5% wurde errechnet und die unter Wasser zu erbringende Leistung als Schwerstarbeit eingestuft.

Einleitung

In einer Studie von Droste (2005) wurde ein selbstentwickeltes, Umgebungsdruck gesteuertes Ausatemventil genutzt und die Ausatemluft zur Einzelatemzuganalyse weitergeleitet, um die \(\mathrm{VO}_2 \) und \(\mathrm{VCO}_2 \) zu ermitteln. Die Schwimmtauchversuche fanden in einem Strömungskanal statt. Hierbei wurde die Möglichkeit genutzt, Widerstandsmessungen durchzuführen bei verschiedenen Ausrüstungskonfigurationen.
Grundlagen der Tauchgerätetechnik

2. Grundlagen der Tauchgerätetechnik

Für die vorliegenden Untersuchungen musste ein geeigneter Typ von Tauchgerät ausgewählt werden. Im Folgenden wird kurz auf die Hauptmerkmale der unterschiedlichen Tauchsysteme eingegangen, was auch zum besseren Verständnis des späteren Messaufbaus beitragen soll.

Grundsätzlich gibt es vier verschiedene Varianten von Tauchgeräten:

- Offene Tauchgeräte
- Sauerstoffkreislaufgerät
- Geschlossenes Kreislaufgerät
- Halbgeschlossenes Kreislaufgerät

2.1 Offene Tauchgeräte

2.2 Kreislauftauchgeräte

Alle Kreislauftauchgeräte haben bestimmte gemeinsame Baugruppen und auch Komponenten von offenen Tauchgeräten werden bei Kreislaufgeräten genutzt.

Der Taucher atmet durch ein Mundstück, über ein Ausatemschlauch in einen Ausatembeutel aus. Das im Ausatemgas enthaltene Kohlenstoffdioxid (CO₂) wird durch Atemkalk im Kalkbehälter absorbiert, sodass das Gas wieder verwendet werden kann. Von hieraus strömt das Gas in den Einatembeutel.

2.2.1 Sauerstoffkreislaufgerät

Sauerstoffkreislaufgeräte werden fast nur für militärische Zwecke eingesetzt. Für gewöhnlich handelt es sich um einfache, vor der Brust zu tragende Einheiten, die reines \(\text{O}_2 \) enthalten.

2.2.2 Geschlossenes Kreislaufgerät

Bei geschlossenen Kreislaufgeräten entweicht nicht über ein Überdruckventil periodisch Gas aus dem Atemkreislauf (außer beim Aufstieg). Die Sauerstoffzufuhr ist dynamisch, d.h. sie ändert sich mit der Tauchtiefe, was einen konstanten PO\textsubscript{2} zur Folge hat.

2.2.3 Halbgeschlossenes Kreislaufgerät

Das halbgeschlossene System wurde entwickelt, um den immensen Gasverlust von offenen Systemen zu reduzieren und größere Tauchtiefen als beim Sauerstoffkreislaufgerät zu erreichen. Die aufwendige elektronische Steuerung von geschlossenen Kreislaufgeräten wird bei halbgeschlossenen Systemen nicht benötigt.

Abb. 2: Funktionsprinzip eines halbgeschlossenen Kreislaufgeräts.

1. Druckgasflasche
2. Druckminderer
3. Manometer
4. Dosiereinheit
5. Einatembeutel
6. Einatemschlauch
7. Mundstück
 mit Richtungsventilen
8. Ausatemschlauch
9. Ausatembeutel
10. Überdruckventil
11. CO\textsubscript{2}-Absorber

3. Systementwicklung

3.1 Anforderungen an das Messsystem

Im Folgenden werden die wünschenswerten Eigenschaften eines Messsystems, das den Anforderungen einer mobilen Methode gerecht werden sollte, aufgelistet:

3.1.1 Technische Eigenschaften

- Aufzeichnung der zurückgelegten Strecke in Metern
- Aufzeichnung der Testzeit
- Geschwindigkeitsaufzeichnung (relativ zum Wasser)
 - Aktuelle Geschwindigkeit
 - Maximale Geschwindigkeit
 - Durchschnittsgeschwindigkeit
- Speicherung mehrerer Parameter
 - Herzfrequenz
 - Ventilation
 - Sauerstoffsättigung
- Möglichkeit zur Integration weiterer Geräte
3.1.2 Handhabung

- Einfache Handhabung aller für den Betrieb notwendigen Bedienelemente auch mit Kälteschutzhandschuhen
- Möglichst keine Bewegungseinschränkung des Benutzers
- Schnelle und einfache Auswertung der erhobenen Daten

3.1.3 Umweltbedingungen

- Stoßunempfindlich
- Nutzung bis zu einem Umgebungsdruck von 5 bar, etwa 40 m Wassertiefe
- Einsatzbereich: Süss- und Salzwasser
- Temperaturbereich von 3 °Celsius bis 40 °Celsius
- Einfache Lagerung und Wartung

3.2 Schwimmbrett „Tattle“

Das erste Entwicklungsziel bestand darin, eine einfache und kostengünstige Methode zur Vorgabe und Messung der Schwimmgeschwindigkeit relativ zum Wasser zu finden.

Alle oben genannten Methoden werden also den Anforderungen eines praxisnahen Messsystems (siehe Kap. 3.1) nicht gerecht. Ein Messsystem in Form eines Schwimmbrettes wurde entwickelt das sowohl eine Geschwindigkeitsaufzeichnung als auch eine Datenerfassung ermöglicht.

Das Schwimmbrett „Tattle“ (Birken 2003) wurde im Verlauf dieser Studie entwickelt und für die Datenerhebung in der vorliegenden Arbeit benutzt. Im Folgenden wird auf die Funktion und Nutzung des Systems zur Datenerfassung und Versuchsteuerung unter Wasser eingegangen.

Es wurde ein Schwimmbrett konstruiert, das das Gehäuse für den Datenlogger (Tattle, 520 Fa. Onset®) mit LC Display und weitere elektronische Bauteile enthält.
Abb. 3: Schwimmbrett mit integriertem Aluminiumgehäuse. Im wasserdichten Gehäuse befindet sich der Datenlogger (Tattle, 520) und der HF-Empfänger. Länge 390 mm, Breite 250 mm, Gewicht 4800 gr.

Um den zurückgelegten Weg zu bestimmen, muss festgestellt werden wie oft sich der Impeller während einer definierten Strecke dreht. Während eines Tauchgangs wurde die Wegaufzeichnung kalibriert. Dazu wurde zehnmal hintereinander eine Strecke von 30m in 1,80 m Tiefe durchschwommen, hierbei wurden jedes Mal über das Zählregister die Impellerumdrehungen aufgezeichnet. Für 1m zurückgelegte Strecke ergab sich eine Umdrehungszahl von 30 ± 1 pro Meter (±SD).

Systementwicklung

gespeichert. Somit werden die Berechnungen der Herzfrequenz (inverse Zeitdifferenz) und der Geschwindigkeit (Differenz der Zählerstände pro Zeitdifferenz) möglich.

Während des Versuchs wurden dem Probanden die jeweilige Abweichung (±0,1 m s⁻¹) von der programmierten Soll-Geschwindigkeit (v_s) zur Ist-Geschwindigkeit (v_i) sowie das Ende des Versuchs im Display angezeigt. Des Weiteren wird dem Probanden während des Versuchs über drei Leuchtdioden (LED) mitgeteilt, ob er sich im korrekten Geschwindigkeitsbereich befindet. Das Softwareprogramm berechnet für die Dauer der programmierten Stufen automatisch die jeweilige Abweichung. Seitens des Probanden ist während eines Tests lediglich die angezeigte Abweichung möglichst gering zu halten.

Gelbe LED $v_i < v_s$
Grüne LED $v_i = v_s$
Rote LED $v_i > v_s$
Die beschriebene Technik verfügt zusammenfassend über folgende Eigenschaften:

- Aufzeichnung der zurückgelegten Strecke und vergangenen Zeit
- Aufzeichnung der Herzfrequenz
- Aufzeichnung analoger Daten zur Berechnung von:
 - \(VO_2 \)
 - Ventilation
 - Atemwiderstand

- Anzeige bei Abweichung von Soll – und Istwert zur Einhaltung der Schwimmgeschwindigkeit
3.3 Methode der VO₂ - Messung

Formel 1: \[VO₂ = \frac{(p₁-p₂)Vf}{Δt} \]

p₁ = Anfangsdruck [bar], p₂ = Enddruck [bar],
Vf = Flaschenvolumen [l], Δt = Zeit [min]
Systementwicklung

Abb. 6: Drucksensor (PDCR 900) verbunden über ein Kabel, mit zwischengeschaltetem Signalverstärker zum Schwimmbrett. Der Drucksensor wurde am Hochdruckabgang des Druckminderers (siehe Abb.2, Nr.2) angeschlossen.

3.4 Methode der Ventilations- und Atemwiderstandsmessung

Ein Abnahmepunkt für beide Sensoren befand sich im Mundstück des Kreislauftauchgerätes, im Walzenschieber.
Abb. 8: Abnahmepunkte der Sensoren in den Atemschläuchen. Für die Druckmessung im Mundstück, wurde jeweils der Abnahmepunkt S_0 bzw. S_1 auf Brustbeinhöhe zur Referenzmessung fixiert.

Abb. 9: Δp wurde jeweils für die inspiratorische (Δp_i) und exspiratorische (Δp_e) Seite gemessen. Im Mundstück sind die Richtungsventile dargestellt, welche eine Gasflussrichtung in Pfeil-Richtung ermöglichen.

![Abnahmepunkte der Druckmessung](image)

Abb. 10: Darstellung der Abnahmepunkte des Drucks nach EN 14143 im Mündstück und auf Brustbeinhöhe zur Ermittlung des Atemwiderstands aus Δp_r.

Die Abnahmepunkte des Drucks zur Ermittlung des Atemwiderstands befanden sich im Mundstück und als Referenzpunkt auf Höhe des Brustbeins. Diese Anordnung der Sensoren entspricht der EN 14143 für autonome Regenerationstauchgeräte. Die eigentliche Messung von Volumenstrom und Atemwiderstand wurde jeweils am Ende der
jeweiligen Schwimmstufe durchgeführt. Während der letzten 10 s einer Teststufe wurden die entsprechenden Parameter mit einer Frequenz von 100 Hz aufgezeichnet.

In einem halbgeschlossenen Kreislaufgerät existiert ein dauernder Überdruck, da durch die Zudosierung der Atemgase die Versorgung des Tauchers gewährleistet wird. Im SMT wurde das Überdruckventil maximal geschlossen. Dadurch stellte sich ein Überdruck von 32 mbar ein. Für die Bestimmung des Drucknullpunkts wurde am Ende eines Testdurchlaufs bei geschlossenem Mundstück der absolute Druck im Mundstück gemessen.

Für die Messung des Atemwiderstandes und der Ventilation wurde das SMT gerätetechnisch nicht verändert. Die Eigenschaften als mechanisch halbgeschlossenes Kreislaufgerät wurden nicht beeinflusst.
Abb. 11: Anordnung der Sensoren und des Akkublocks im SMT 7000 Gehäuse (zu Demonstrationszwecken ohne Abdeckung). S₀ für die exspiratorische Seite. S₁ für die inspiratorische Seite. S₂ Aufnahme des absoluten Drucks.

3.5 Kalibrierungsmessungen der Ventilation und des Atemwiderstands

Kalibrierungsmessungen für die Ventilation und den Atemwiderstand wurden im Labor und im Schwimmbad durchgeführt. Durch definierte Kolbenhübe mit einer Kalibrationspumpe (Jaeger®) mit konstantem Volumenfluss pro Zeiteinheit war es möglich, das System für verschiedene Volumenströme zu kalibrieren und den digitalen Flow-Werten ml-Werte zuzuordnen. Es wurden langsame, mittlere und schnelle Atemzüge (AZ) simuliert, mit einer Taktung von 0,25 AZ s⁻¹, 0,5 AZ s⁻¹ und 1 AZ s⁻¹. Ein Metronom wurde auf einen Takt von 1 Hz eingestellt um kontrollierte manuelle Kolbenhübe durchzuführen. Das SMT wurde mit Hilfe einer Stützvorrichtung im Neigungswinkel von +45° in Schwimmposition fixiert. Das Überdruckventil des SMT wurde auf 32 mbar, wie später auch bei den Schwimmtauchversuchen eingestellt.
Die Atemstrommessung erfolgte über die Druckdifferenz. Nach dem Gesetz von Hagen–Poiseuille besteht für laminare Strömungsverhältnisse eine lineare Beziehung zwischen dem konstanten Volumenstrom pro Zeiteinheit und der Druckdifferenz (Δp). Strömt Gas durch einen Atemschlauch, entsteht zwischen zwei Messpunkten eine Druckdifferenz, welche zur Atemstromstärke (V) direkt proportional ist:

Formel 2: $\Delta p \sim V$

Durch Integration über die Zeit (dt) lässt sich mit der Atemstromstärke das ventilierte Volumen bzw. der Volumenfluss (V) berechnen:

Formel 3: $\int V \, dt = V$

An das Mundstück des Atemschlauchs wurde eine Kalibrationspumpe mit einem Volumen von 3l zur Simulierung von Atemzügen befestigt. Nur die Echtzeit und die Daten der Sensoren S_0, S_1 und S_2 wurden gespeichert. Es zeigte sich, dass das Messsystem bei langsamen und mittleren Atemzugsgeschwindigkeiten relativ genau arbeitete und im Mittel ein Volumen von 3000 ± 85 ml ($\bar{V} \pm SD$) erfasste. Bei schnellen Atemzügen
waren die Abweichungen mit ± 950 ml größer. Diese Abweichung musste bei der späteren Auswertung der Datensätze berücksichtigt werden.

Für die Kalibration der Atemwiderstandsmessung wurden im Labor mit Hilfe eines mechanischen Druckkolbens und eines analogen Druckmanometers (Skalenwert -20 bis +20 mbar) der Güteklasse 1 (Genauigkeit ± 1% vom Skalenwert) der Firma Dräger® definierte Drücke im Atemkreislauf des SMT erzeugt. So konnte ein Umrechnungsfaktor ermittelt werden, mit dem den Messwerten mbar-Werte zugeordnet werden konnten.

Soll der Atemwiderstand bestimmt werden, muss der intrapulmonale Druck, der Außendruck und die Atemstromstärke gemessen werden (Tammeling et al. 1980). Die Abnahmepunkte zur Messung des Drucks befanden sich im Mundstück und auf Höhe des Brustbeins (siehe Abb.10).

Um die bei der Atmung entstandenen Widerstände zu ermitteln, wurde der Atemwiderstand (R) als Produkt aus der Atemstromstärke (V) und dem Kehrwert der Druckdifferenz (Δp) zwischen dem intrapulmonalen Raum und dem Außendruck berechnet.

Messungen mit simulierten Atemzügen unter hyperbaren Bedingungen wurden im Sprungbecken des Schwimmzentrums der DSHS Köln in 1,4 m und 4,5 m Tiefe durchgeführt.

Ein Taucher trug das SMT auf dem Rücken und atmete aus einem separaten Atemsystem. Am Mundstück des SMT war eine 1 l Kalibrationspumpe fixiert, mit dem ein zweiter Taucher simulierte Atemzüge durchführte.

Abb. 13 zeigt die Inspirations- Atemhalbschleifen von zwei simulierten Atemzügen in einer Wassertiefe von 4,5 m. Wie zu erwarten sind ähnliche Volumenwerte erreicht worden. Dagegen sind bei beiden Kurven deutlich die Einflüsse des höheren Umgebungsdrucks zu sehen. Es wird ein maximaler Unterdruck von -8 mbar erreicht. Im Gegensatz zum maximalen Wert bei der Messung in 1,4 m Wassertiefe von -5 mbar.
Diese Erhöhung des Einatmenwiderstands kann durch eine höhere Gasdichte erklärt werden.

Abb. 13 Druck-Volumen Atemhalbschleifen einer Inspirationsphase. Kolbenhubversuch mit 1l Kalibrationspumpe, in 4,5 m Wassertiefe
4. Erprobung unter praxisnahen Bedingungen

Im Folgenden werden die beiden Versuchsprotokolle zur Erhebung von HF, der VO₂, der Ventilation und des Atemwiderstands unter praxisnahen Bedingungen beschrieben. Beide Versuchsprotokolle hatten eine identische Vorbereitung und werden darum zusammen beschrieben.

4.1 Allgemeine Information zur Durchführung

Einige Versuche wurden zunächst in einem Drei-Stufentest mit den Geschwindigkeiten 0,4 m s⁻¹, 0,6 m s⁻¹ und 0,8 m s⁻¹ geschwommen, wobei die Geschwindigkeit von 0,8 m s⁻¹ durch die konstruktionsbedingte Baumasse des SMT nicht einzuhalten ist, da hier erhebliche Schwimmwiderstände auftreten. So wurde letztendlich ein Zwei-Stufentest für beide Versuchsserien ausgewählt. Die erste Stufe sollte mit einer Geschwindigkeit von 0,4 m s⁻¹ und die zweite Stufe mit 0,6 m s⁻¹ geschwommen werden, die Stufendauer würde auf 4 min angesetzt, so dass sich eine Gesamttestzeit von 8 min ergab.

Erprobung unter praxisnahen Bedingungen

Rückstaumessung die korrekte Dosierung der Sauerstoff bzw. Druckluftzufuhr tiefensimuliert gemessen.

Das 40 kg schwere SMT wurde jeweils am Beckenrand aufrecht platziert und durch den Protokollanten gesichert. Der Proband legte den in einem Brustgurt befindlichen HF-Sender an, setzte sich an den Beckenrand vor das SMT, nahm das Schwimmbrett in die Hand und hielt es vor die Brust. War die Übertragung des Herzschlagsignals und die Speicherung aller relevanten Daten gewährleistet, wurde das Programm des Datenloggers per Magnetschalter in Startposition gebracht. Am Ende jedes Versuchsdurchlaufs wurden die Daten vom Schwimmbrett auf einen Laptop übertragen und gesichert.

4.2 Statistik

Vor Beginn der statistischen Bearbeitung beider Versuchsreihen wurden die ermittelten Rohdaten auf zu verwertende Messfehler untersucht. Für die Mittelwertvergleiche wurde ein T-Test angewandt.

4.3 Versuchsdurchführung der VO₂- und Herzfrequenzmessung

Die Versuche wurden auf einer 50m Schwimmbahn an der DSHS durchgeführt. 9 männliche Sportstudenten standen als Probanden mit einer entsprechenden taucherischen Erfahrung und körperlichen Fitness zur Verfügung. Die Probanden sollten fast die ganze Länge der Bahn ausnutzen jedoch während der Wende über eine Breite von drei Bahnen den Rückweg antreten. Somit wurden abrupte Richtungs- und Geschwindigkeitswechsel vermieden. Die Probanden schwammen einen
Erprobung unter praxisnahen Bedingungen

Zweistufentest mit einer durchschnittlichen Tiefe von 1,80 m. Die Wassertemperatur betrug im Mittel 24° Celsius, die Probanden trugen keine Wärmeschutzkleidung. Jeder Proband hatte die Gelegenheit, eine Gewöhnungs runde mit dem Tauchgerät zu schwimmen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>178</td>
<td>79</td>
<td>3 x</td>
<td>2500</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>176</td>
<td>75</td>
<td>2 x</td>
<td>500</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>193</td>
<td>83</td>
<td>1 x</td>
<td>375</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>174</td>
<td>70</td>
<td>2 x</td>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>190</td>
<td>82</td>
<td>2 x</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>183</td>
<td>82</td>
<td>8 x</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>186</td>
<td>84</td>
<td>1 x</td>
<td>330</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>182</td>
<td>89</td>
<td>4 x</td>
<td>400</td>
<td>50</td>
</tr>
</tbody>
</table>

Mw. 29,5 182,75 80,5 2,88 559,38 51,88
SD. ±3,11 ±6,69 ±5,83 ±2,29 ±798,32 ±53,44

Tab. 1: Anthropometrische Daten der Probanden (n=8) für die HF- und VO₂- Messung
Erprobung unter praxisnahen Bedingungen

Abb. 14: Taucher mit Schwimmbrett

4.4 Versuchsdurchführung der Ventilationsmessungen und Atemwiderstandsmessung

An dieser Versuchsserie nahmen fünf ausdauertrainierte, männliche Taucher teil.

<table>
<thead>
<tr>
<th>ID</th>
<th>Alter</th>
<th>Grösse [cm]</th>
<th>Gewicht [kg]</th>
<th>Training aerob / Woche</th>
<th>Tauchgänge gesamt</th>
<th>Tauchgänge 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>189</td>
<td>84</td>
<td>3 x</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>176</td>
<td>80</td>
<td>2 x</td>
<td>750</td>
<td>280</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>180</td>
<td>75</td>
<td>3 x</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>183</td>
<td>82</td>
<td>8 x</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>178</td>
<td>80</td>
<td>3 x</td>
<td>2000</td>
<td>50</td>
</tr>
</tbody>
</table>

Mw. 28,4 181,2 80 3,80 688,58 106
SD. ±3,43 ±5,06 ±3,34 ±2,39 ±781,50 ±99,64

Tab. 2: Anthropometrische Daten der Probanden (n=5) für die Atemwiderstands- und Ventilationsmessung

Die Versuche fanden im 20x20x5 m Sprungbecken der DSHS statt. Die Wassertemperatur betrug im Mittel 26° Celsius. Die Probanden schwammen jeweils in „Kreisbahnen“ mit einer Stufendauer von 4 min. und einer Anfangsgeschwindigkeit von 0,4 m s⁻¹ und folgend von 0,6 m s⁻¹ mit einer durchschnittlichen Tiefe von 4,5 m. Die Drucksensoren wurden
mit einem Softwareprogramm der Firma Keller® an jeden Versuchstag kalibriert.

4.5 Messergebnisse der Erprobung

4.5.1 VO_2- und Herzfrequenzmessung

Aus den ermittelten Messwerten konnten die Daten von acht Probanden genutzt werden. Bei einem Probanden hat die Datenübertragung der HF nicht einwandfrei funktioniert, da das Schwimmbrett bzw. der HF Sender zu weit vom Körper entfernt war. Abb. 15 zeigt exemplarisch den Verlauf der HF über einen Zwei-Stufentest eines Probanden. In der ersten Stufe ($v = 0,4 \text{ m} \text{s}^{-1}$) ist zu erkennen, dass sich die HF nach Versuchsbeginn auf einen Wert von 100 min $^{-1}$ stabilisiert, also ein Steady-State erreicht wird. In der zweiten Geschwindigkeitsstufe ($v = 0,6 \text{ m} \text{s}^{-1}$) stellt sich bei diesem Probanden kein deutliches Steady-State mehr ein. Abb.16 zeigt die Mittelwerte der HF von 6 Probanden.
Erprobung unter praxisnahen Bedingungen

Abb. 16: Mittlere HF [min⁻¹] jeder Minute bei einem Zwei-Stufentest Probanden ID 3-8, (n=6)

Bei der Betrachtung der Daten ist zu sehen, dass die meisten Probanden in der ersten Geschwindigkeitsstufe in einem HF Bereich zwischen 90 und 120 min⁻¹ liegen, im Mittel lag die HF bei 116 ± 20 min⁻¹ (X±SD). Nach Auskunft der Probanden konnte die erste Geschwindigkeitsstufe von allen gut bewältigt werden. Bei dieser Stufe haben alle Probanden ein sichtbares Steady-State erreicht (siehe Abb.16). In der zweiten Geschwindigkeitsstufe ist bei allen Probanden, entsprechend ihrer HF-
Daten in der ersten Stufe, ein deutlicher Anstieg der HF zu sehen. Im Mittel lag die HF hier bei 152 ± 15 min⁻¹ (X±SD). Im Gegensatz zu der Stufe mit 0,4 m s⁻¹, wird bei einer Geschwindigkeit von 0,6 m s⁻¹ nur noch von einem Probanden ein Steady-State erreicht. Dies spiegelt sich auch bei einem Vergleich der Soll- und Ist-Geschwindigkeit wieder. Generell wurde bei der ersten Stufe die v_s von den Probanden überschritten bei einer v_i von 0,44 ± 0,2 m s⁻¹ (X±SD) und bei der zweiten Stufe bei einer v_i von 0,58 ± 0,04 m s⁻¹ (X±SD) unterschritten. Abb. 17 zeigt die mittlere HF aller Probanden der letzten Minute der jeweiligen Schwimmstufe bei 0,4 m s⁻¹ und 0,6 m s⁻¹. Das Verhältnis zwischen VO₂ und Schwimmgeschwindigkeit wird auf der rechten Seite in Abb. 17 dargestellt.

![Diagramm](image1.png)

Abb. 17: Mittlere HF [min⁻¹] und VO₂ [l min⁻¹] bei den Soll-Schwimmgeschwindigkeiten von 0,4 u. 0,6 [m s⁻¹], (n=8) Mw±SE

Für die von den Probanden als geringe Belastung eingeschätzte Geschwindigkeit von 0,4 m s⁻¹ zeigten sich auch niedrige Werte für die Sauerstoffaufnahme (siehe Abb.17). Die mittlere VO₂ von 1,65 ± 0,37 l min⁻¹ (X±SD) für die erste Stufe des Test beschreibt einen Wert der in diesem Bereich als normal (US Navy Diving Manual 1999) gelten kann, unter Berücksichtigung des konstruktionsbedingten Schwimmwiderstands.
Erprobung unter praxisnahen Bedingungen

des SMT. Bei einer Geschwindigkeit von 0,6 m s\(^{-1}\) wird ein mittlerer VO\(_2\) von 2,8 ± 0,42 l min\(^{-1}\) (\(\bar{x} \pm SD\)) erreicht. Alle Probanden bestätigten dass diese Geschwindigkeit mit dem SMT als hochgradig anstrengend einzustufen ist.

Abb. 18 gibt einen Überblick über die Werte von acht Probanden für folgende Parameter: Geschwindigkeit [m s\(^{-1}\)], Herzfrequenz [min\(^{-1}\)] und maximale Sauerstoffaufnahme, VO\(_2\) [l min\(^{-1}\)] für die letzte Minute der zweiten Stufe bei einer Ist-Geschwindigkeit (v\(_i\)) von 0,58 ± 0,04 m s\(^{-1}\) (\(\bar{x} \pm SD\)). Individuelle Schwankungen zwischen den einzelnen Probanden bzgl. der HF und VO\(_2\) sind zu erkennen. Die Probanden 1, 2, 7 und 8 zeigen eine geringere HF im Verhältnis zur VO\(_2\) im Gegensatz zu den Probanden 3, 4, 5 und 6.

Abb. 18: Mittelwerte von VO\(_2\), HF und v. Während der letzten Minute in der zweiten Stufe für alle Probanden. Deutliche individuelle Schwankungen im Verhältnis von HF und VO\(_2\).

4.5.2 Ventilations- und Atemwiderstandsmessung

Wie oben beschrieben konnte jeweils nur die Inspiration bzw. Expiration während eines Versuches analysiert werden. Dadurch war es in diesem Versuchsaufbau nicht möglich einen kompletten Atemzug (Inspiration und die folgende Expiration) aufzuzeichnen. Während der
Aufzeichnungsphase der Ventilationswerte von 10 s haben die Probanden
durchschnittlich 3 Atemzüge in der ersten Teststufe gemacht. 4
Atemzüge wurden im Mittel für die zweite Teststufe festgestellt. Für die
Auswertung der Daten wurden die beiden gleichmäßigsten Atemzüge
ausgesucht. In der ersten Stufe des Tests wurde ein exspiratorisches
Atemzugvolumen zwischen 1199 ml und 1839 ml aufgezeichnet, der
Mittelwert lag bei 1592 ± 188 ml (±SD). Während der
Inspirationsphase wurden 1504 ml als minimaler und 2588 ml als
maximaler Wert erreicht, im Mittel lag das gemessene Volumen bei 2043
± 295 ml (±SD). Der Unterschied zwischen Inspiration und Expiration
war signifikant. Während der zweiten Teststufe sind die Werte der
höheren Belastung entsprechend, gestiegen. Für die Expiration konnte
ein minimales Volumen von 1639 ml und ein maximales von 3615 ml
gemessen werden. Der Mittelwert lag bei 2624 ± 573 ml (±SD). Für die
Inspiration wurden folgende Atemzugvolumenwerte ermittelt: Maximal
4410 ml und Minimal 2485 ml, Mittelwert 3013 ± 691 ml (±SD).

Tab. 3 zeigt die Mittelwerte der Volumen und Druckwerte für jeweils zwei
Atemzüge während der ersten Stufe des Tests. In Tab. 4 sind diese Werte
für die zweite Stufe zu sehen. Im Mittel wurden bei der ersten Stufe auf
der Exspirationsseite negative Drücke von -7,5 ± 5,2 mbar (±SD)
gemessen. Im positiven Bereich war der höchste Druck durchschnittlich
6,7 ± 2,5 mbar (±SD). Auf der Inspirationsseite betrugen die Werte im
Mittel positiven Bereich 7,9 ± 4,2 mbar (±SD) und im negativen Bereich
-8,3 ± 2,9 mbar (±SD).

Für die Exspirationsseite wurde ein durchschnittlicher negativer Druck
von -13,3 ± 2,4 mbar (±SD) gemessen und ein positiver von 11,0 ±5,1
mbar (±SD). In der Inspirationsphase wurden Drücke von 8,4 ±
3,9 mbar (±SD) und -8,6 ± 2,5 mbar (±SD) gemessen.

Erwartungsgemäß sind bei den Schwimmversuchen mit einer
Geschwindigkeit von 0,6 m s⁻¹ die höchsten Ventilations- und Druckwerte
aufgetreten (siehe Tab. 4). Wie schon bei den vorausgegangenen
Versuchen für die Bestimmung der VO₂ ist die zweite Stufe auch nach der
subjektiven Beurteilung der Probanden als sehr anstrengend bezeichnet
Erprobung unter praxisnahen Bedingungen

worden, was wiederum durch die gemessenen Daten belegt wurde. Bei der ersten Stufe wurde ein max. Druck von 10,3 mbar während der Exspirationsphase gemessen und ein max. Wert von -12,6 mbar bei der Inspiration erreicht. Während der zweiten Stufe wurde für die Expiration ein max. von 20,2 mbar gemessen und für die Inspiration ein Höchstwert von -13,7 mbar.

<table>
<thead>
<tr>
<th>0,4 [m s(^{-1})]</th>
<th>Expiration</th>
<th></th>
<th>Inspiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ex})</td>
<td>(-p)</td>
<td>(+p)</td>
<td>(V_{in})</td>
</tr>
<tr>
<td>[ml]</td>
<td>[mbar]</td>
<td>[mbar]</td>
<td>[ml]</td>
</tr>
<tr>
<td>peak</td>
<td>peak</td>
<td>peak</td>
<td>peak</td>
</tr>
<tr>
<td>Mw.</td>
<td>1591,69</td>
<td>-7,48</td>
<td>6,73</td>
</tr>
<tr>
<td>SD.</td>
<td>±187,59</td>
<td>±5,24</td>
<td>±2,51</td>
</tr>
</tbody>
</table>

Tab. 3: Mittlere in– und exspiratorische Volumina (\(V_{ex}, V_{in}\)) und Mittelwerte der positiven und negativen Drücke während der Exspirations- und Inspirationsphase, für zwei Atemzüge in den letzten 10 s der ersten Teststufe (n=5).

<table>
<thead>
<tr>
<th>0,6 [m s(^{-1})]</th>
<th>Expiration</th>
<th></th>
<th>Inspiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ex})</td>
<td>(-p)</td>
<td>(+p)</td>
<td>(V_{in})</td>
</tr>
<tr>
<td>[ml]</td>
<td>[mbar]</td>
<td>[mbar]</td>
<td>[ml]</td>
</tr>
<tr>
<td>peak</td>
<td>peak</td>
<td>peak</td>
<td>peak</td>
</tr>
<tr>
<td>Mw.</td>
<td>2624,19</td>
<td>-13,30</td>
<td>11,08</td>
</tr>
<tr>
<td>SD.</td>
<td>±573,34</td>
<td>±2,45</td>
<td>±5,12</td>
</tr>
</tbody>
</table>

Tab. 4: Mittlere in– und exspiratorische Volumina (\(V_{ex}, V_{in}\)) und Mittelwerte der positiven und negativen Drücke während der Exspirations- und Inspirationsphase, für zwei Atemzüge in den letzten 10 s der zweiten Teststufe (n=5).
Exemplarisch werden in Abb. 19 und 20 die Atemhalbschleifen des Probanden Nr. 1 dargestellt. Es ist deutlich zu erkennen, dass bei einer erhöhten Leistung auch höhere Ventilationswerte erreicht werden. Während der ersten Teststufe (Abb.19) ist fast schon eine Ruheatmungsschleife zu sehen. Besonders auffällig ist der Verlauf der Exspirationskurve während der zweiten Teststufe (Abb.20). Hierbei ist zu sehen, dass bei vertiefter und beschleunigter Atemung die

Mit den Parametern der Atemfrequenz (Af) und des AZV konnte das Atemminutenvolumen (AMV) bzw. Atemzeitvolumen bestimmt werden. In Tab. 5 ist das mittlere Atemzeitvolumen der Inspiration (\(V_I\)) und Expiration (\(V_E\)) aller Probanden, hochgerechnet auf die letzten 60 s beider Teststufen, dargestellt. Für die erste Teststufe ergibt sich eine Af von 18 min\(^{-1}\) und für die zweite Teststufe eine Af von 24 min\(^{-1}\). Für die letzten 60 s der ersten Stufe konnte ein \(V_I\) von 36 l min\(^{-1}\) und \(V_E\) von 29 l min\(^{-1}\) ermittelt werden. In der zweiten Teststufe waren es in den letzten 60 s ein mittleres \(V_I\) von 72 l min\(^{-1}\) und ein \(V_E\) von 63 l min\(^{-1}\). \(V_I\) war in beiden Teststufen deutlich höher als \(V_E\).

<table>
<thead>
<tr>
<th></th>
<th>[l min(^{-1})]</th>
<th>[l min(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stufe 1</td>
<td>Stufe 2</td>
</tr>
<tr>
<td>(V_E)</td>
<td>29</td>
<td>63</td>
</tr>
<tr>
<td>(V_I)</td>
<td>36</td>
<td>72</td>
</tr>
</tbody>
</table>

Tab. 5: Errechnete Werte des Atemzugvolumens für Exspirations- und Inspirationsphase (n=5)
4.6 Diskussion der Messergebnisse

Wie an der exemplarischen Darstellung der Ergebnisse zu erkennen ist, wurden während der Erprobung verwertbare Testergebnisse geliefert. Zeit, Herzfrequenz, \(\text{VO}_2 \), Ventilation und die dazu gehörige Schwimmgeschwindigkeit wurden registriert. Parameter wie der Flossenschlag, Wasserlage des Probanden und Sitz des Tauchgerätes können nicht mit dem benutzten Messsystem erfasst werden, könnten aber einen Einfluss auf das Testergebnis haben und müssen für die Interpretation ins Kalkül gezogen werden. Eine hohe HF im Verhältnis zu einer niedrigen Schwimmgeschwindigkeit könnte sich durch eine schlechte, strömungsungünstige Wasserlage des Probanden ergeben. (Böttger 2003).

Für alle Probanden gab es die Gelegenheit eine Eingewöhnungsrunde mit dem SMT zu schwimmen. Trotz des hohen Gewichts an Land empfanden die meisten Probanden das SMT im Wasser als gut tragbar und durch die Nachrüstung eines Schrittgurts konnten alle Probanden das Tauchgerät gut am Körper fixieren.
Die beiden Geschwindigkeitsstufen von 0,4 m s\(^{-1}\) und 0,6 m s\(^{-1}\) wurden von allen Probanden ohne Probleme bewältigt. Bei Feldversuchen mit Kälteschutzanzügen ist abzuwägen, ob eine Geschwindigkeit von 0,6 m s\(^{-1}\) nicht zu hoch ist. Voraussichtlich sollte hier für die zweite Stufe ein Geschwindigkeitsbereich von 0,5 m s\(^{-1}\) gewählt werden. Diese scheinbar geringe Erhöhung der Geschwindigkeitsvorgabe wäre bei Versuchen mit Tauchanzügen sinnvoll, da bei den Schwimmversuchen ohne Kälteschutz die Probanden eine Erhöhung um 0,2 m s\(^{-1}\) schon subjektiv als deutlich anstrengender empfanden. Eine genauere Ermittlung des Soll-Ist-Wertes der Geschwindigkeit des Schwimmbretts mit einer Abstufung von 0,1 m s\(^{-1}\) wäre daher wünschenswert.

In Abb. 21 sind exemplarisch die Schwimmgeschwindigkeits-Rohdaten eines Versuch aus der Serie dargestellt, man kann die beiden Schwimmstufen von ca. 0,4 m s\(^{-1}\) und 0,6 m s\(^{-1}\), die dem Probanden vorgegeben worden sind erkennen. Es sind aber auch deutlich abfallende Werte zu sehen. Dadurch ist der gesamte Kurvenverlauf als „zackig“ zu bezeichnen. Das ist durch die zu schwimmenden Kurven des Probanden zu erklären bzw. ein nicht korrekt geführtes Schwimmbrett. Eine genaue Aufzeichnung der Geschwindigkeit ist aber eine Vorraussetzung, um die erbrachte Leistung eines Probanden vergleichbar und reproduzierbar zu machen. Idealerweise hat der Proband keinen direkten Einfluss auf die Messung der Geschwindigkeit.

Die Stufendauer von 4 min ist so gewählt, dass sich bei genügender Leistungsfähigkeit des Probanden ein Steady-State der Herzfrequenz einstellen kann. Im Mittel lag die HF während der ersten Stufe bei 116 ± 20 min⁻¹ (\(\bar{x} \pm SD\)). Die Unterschiede der HF bei den jeweiligen Probanden innerhalb einer Schwimmstufe zeigen normale interindividuelle Schwankungen, die im Wesentlichen auf unterschiedliche Trainingszustände und/oder Bewegungseffizienz zurückzuführen sind. Die erzielten HF-Werte von im Mittel 152 ± 15 min⁻¹ (\(\bar{x} \pm SD\)) belegen jedoch, dass die zweite Stufe für die meisten Probanden die oberste zumutbare Geschwindigkeit mit dem SMT darstellt. Unter der Berücksichtigung, dass den Probanden als Atemgas reiner Sauerstoff zur Verfügung stand sind diese Werte als hoch zu bezeichnen. Schaefer (1956) beschrieb eine Senkung der HF bei reiner O₂ Atmung im Verhältnis zur Luft-Atmung. Neuere Studien belegen ebenfalls eine signifikante HF Senkung bei einem Gaswechsel von 30 min Luft zu 10 min Atmung mit O₂ angereicherten Atemgasen (60% O₂) (Edward et al. 1982).

Die gemessenen \(\text{VO}_2 \) Werte (\(\bar{x} \pm \text{SD} \)) lagen im Mittel bei 1,65± 0,37 l min\(^{-1}\) für die erste Teststufe und bei 2,85± 0,42 l min\(^{-1}\) für die zweite Teststufe. Die \(\text{VO}_2 \) der zweiten Stufe spricht für eine hohe Belastung und dürfte von den meisten Freizeittauchern nicht erreicht werden. Eine gewisse Streuung ist auf die unterschiedliche Bewegungsökonomie sowie auf verschiedene Flossentypen zurückzuführen (Hoffmann et al. 2002).

Bei einer Studie von Dräger (1999) wurden höhere \(\text{VO}_2 \) Werte ermittelt bei Schwimmgeschwindigkeiten von 0,70 - 0,80 m s\(^{-1}\). Diese Studie wurde auch mit einem anderen halbgeschlossenen Kreislaufgerät (Dolphin) der Fa. Dräger\(^{\circledR}\) durchgeführt. Das Dolphin hat deutlich kleinere Baumasse als das SMT und somit einen geringeren Strömungswiderstand, jedoch können die ermittelten Werte als Referenz dazu dienen, welche \(\text{VO}_2 \) Werte bei höheren Schwimmgeschwindigkeiten erreicht werden können. Hier mussten die Probanden einen 300 m Schwimmtest mit verschiedenen Geschwindigkeiten schwimmen. Die Probanden sind ebenfalls mit reinem Sauerstoff getaucht. Abb. 21 zeigt die \(\text{VO}_2 \) Werte des SMT im Verhältnis zum Dolphin. Es ist zu sehen, dass entsprechende \(\text{VO}_2 \) Werte mit dem Dolphin erst bei höheren Geschwindigkeiten erreicht wurden. Der höchste \(\text{VO}_2 \) Wert von 3,2 l min\(^{-1}\) wurde nur von einem Probanden bei einer Geschwindigkeit von
Erprobung unter praxisnahen Bedingungen

0,83 m s⁻¹ erreicht.

Abb. 22: Vergleich der erreichten VO₂ Werte von SMT und Dolphin

Bei einer vergleichbaren Studie von Pendergast (1996) wurden bei einer Geschwindigkeit von 0,68 m s⁻¹ eine VO₂ (±SD) von 2,60± 0,21 l min⁻¹ aus dem Luftverbrauch berechnet. Diese Studie wurde mit offenen Tauchgeräten durchgeführt, welche einen geringeren Strömungswiderstand haben. Es ist zu erwarten, dass die genannten VO₂ Werte bei einem voll ausgerüsteten Taucher auch schon bei niedrigen Geschwindigkeiten erreicht werden.

Bei weiterführenden Untersuchungen sollte der erhöhte Schwimmwiderstand z.B durch einen Trockentauchanzug und notwendiges Zusatzequipment bei der Auswahl von Stufenlänge und Schwimmgeschwindigkeit berücksichtigt werden.

Für die Messung der Ventilationsparameter wurden die letzten 10 s der jeweiligen Teststufe gespeichert. Auf eine Korrekturumrechnung der Werte von BTPS auf ATPS musste verzichtet werden, da keine Temperaturmessungen im SMT an den Messstellen vorgenommen worden sind.

Die gemessenen mittleren AZV (±±SD) von 2043 ± 296 ml (Vᵢₙ) und 1592 ± 188 ml (Vₒₓ) während Stufe 1 und 3014 ± 692 ml (Vᵢₙ) und 2624 ± 573 ml (Vₒₓ) während Stufe 2 sind aus physiologischer Sicht vertretbar,
Erprobung unter praxisnahen Bedingungen

auch weil es sich bei den Probanden um aktive Sportstudenten mit einer hohen Ausdauerleistungsfähigkeit handelte, wo durchaus große AZV zu erwarten sind. Die Unterschiede zwischen V_{in} und V_{ex} von bis zu 450 ml sind physiologisch nicht zu erklären. Hierbei zeigt sich der Nachteil einer getrennten Messung von Inspiration und Expiration. Der auf Grundlage von V_{ex} und der Atemfrequenz errechnete Wert von (V_{E}) 63 l min$^{-1}$ für das AMV während der zweiten Teststufe ist aber dennoch als ein realistischer Wert einzustufen.

Nach der europäischen Norm für Kreislauffahgeräte (EN 14143, für autonome Regenerationsgeräte) werden Simulationsversuche mit einer V_{E} von 75 l min$^{-1}$ zur Evaluierung von neuen Tauchsystemen durchgeführt. Dieser Wert ist nach den vorliegenden Ergebnissen, zumindest für das SMT als sinnvolle Größe einzuschätzen. Unter Berücksichtigung aller vorliegenden Parameter wie HF, O_{2} und V_{E} ist es nicht zu erwarten, dass ein Taucher unter realen Bedingungen eine wesentlich höhere V_{E} über einen längeren Zeitraum aufrechterhalten kann.

5. Methodenkritik und neue Lösungsansätze

Mit dem Schwimmbrett konnten verwertbare Daten erhoben werden und es wurde eine brauchbare Vorgabe der Schwimmgeschwindigkeit ermöglicht. Das Schwimmbrett durfte während der laufenden Versuche nicht weiter als ca. 60 cm vom Brustgurt des HF Senders entfernt werden. Um eine einwandfreie Übertragung zu gewährleisten, wurde mit einem Fixierungsband, welches die Probanden um den Hals trugen, eine korrekte Übertragungsdistanz eingehalten. Taucher sind es allerdings nicht gewöhnt ein Schwimmbrett vor ihrem Körper zu halten.

Methodenkritik und neue Lösungsansätze

Im Folgenden werden neue Lösungsansätze dargestellt, die eine genauere Aufzeichnung der Schwimmgeschwindigkeit und eine bessere Datenaufzeichnung ermöglichen:

- Schleppboje „Arcas“ - genauere Geschwindigkeitsvorgabe
- Head up Display (HUD) - bessere Schwimmposition
- MT 25, Datenlooger - bessere Datenaufzeichnung

5.1 Schleppboje „Arcas“

Für eine genaue Geschwindigkeitsvorgabe ist es wichtig nach einem Messsystem zu suchen, welches unabhängig vom Probanden die Ist-Geschwindigkeit ermittelt.

Zur Tauchgeschwindigkeitsmessung wird ein Propeller am Ende der Boje genutzt. Ähnlich wie beim Schwimmbrett, erzeugt dieser im Wasserstrom rotierende Propeller mittels eines Dauermagneten ein wechselndes Magnetfeld. Dieses Feld wird von einem Magnetfeldsensor (Hall Sensor) proportional in ein Rechtecksignal umgewandelt und an den MT 25 (siehe Kap.5.3) oder das Schwimmbrett übertragen (Siemens®, 1997). Das Kabel für die Übertragung der Signale wird auch gleichzeitig als Zugseil genutzt. Der Taucher zieht die Boje hinter sich her und muss somit kein Messsystem vor dem Körper führen, die Einhaltung der Geschwindigkeitsvorgabe erfolgt über ein Head up Display (siehe Kap. 5.2)

1. Entwicklung: Lorenz Krüger
Durch die Form und Materialbeschaffenheit der Boje werden weitere Fehlerfaktoren ausgeschlossen:

 - Länge: 295 mm
 - Gewicht 538 mg
 - Auftrieb 0,1 N

2. Bei den Schwimmversuchen war es teilweise schwierig für die Probanden das Schwimmbrett immer im richtigen Winkel zu halten und somit eine gleichmäßige „Anströmung“ am Impeller zu gewährleisten. Die Boje, welche vom Taucher gezogen wird, richtet sich selbst aus und hat somit immer einen korrekten und gleichmäßigen Wasserstrom am Propeller.

3. Für eine genauere und gleichmäßige Erfassung bei Geschwindigkeiten unter 0,4 m s⁻¹ wurde ein größerer Propeller verwendet. Weiterhin wurde die Welle, auf der der Propeller montiert ist optimiert gelagert. Im Gegensatz zum Impeller beim Schwimmbrett „Tattle“ ist der Propeller mit seiner Welle speziell für den Einsatz im Wasser geeignet.
Abb. 23: Entwurf der Schleppboje „Arcas“ (L. Krüger ©)

Abb. 24: Schleppboje mit Propeller am Ende der Boje
5.2 Head Up Display

Methodenkritik und neue Lösungsansätze

Abb. 25: Drei eingegossene Miniatur LED die am rechten oberen Maskenrand einer Tauchermaske befestigt werden können ergeben eine Art HUD.

5.3 MT 25

Methodenkritik und neue Lösungsansätze

Die entsprechende Elektronik wurde erneut in ein Aluminiumgehäuse wasserdicht verbaut. Zu den weiter oben genannten Eigenschaften des Tattle-Schwimmbretts können die folgenden hinzugefügt werden:

- geringe Baumasse
- Kombination mit „Head up Display“ (HUD) und Schleppboje
- längere Batteriekapazität
- Tastaturplatine Ein-Ausschalter mit 9 Funktionstasten
- verbessertes Grafik-Display
- leistungsfähigere LED
- drei wasserdichte 8-polige Steckbuchsen im Gehäuse

Abb. 26: MT 25 (rechts) mit angeschlossener Schleppboje (links)
6. Anwendungsrelevanz des Messsytems

Mit der Entwicklung von Tauchgeräten, die auch von Sporttauchern einfach genutzt werden können, hat sich das Tauchen zu einer anerkannten und für fast jedermann möglichen Sportart entwickelt. Durch gut organisierte Tauchsportverbände wurde unter anderem einer neuen Klientel von Gelegenheitstauchern diese Sportart eröffnet. Aber gerade diese Taucher müssen immer wieder feststellen, dass sie sich im Wasser in einem Medium bewegen für das sie nicht geschaffen sind. Es kommt immer wieder zu Situationen, in denen ein großer Vortrieb
während eines Tauchgangs gefordert ist, z.B. Schwimmen gegen die Strömung oder Transport eines Tauchpartners an der Wasseroberfläche. Die Effizienz der Flossen und der Strömungswiderstand der Ausrüstung spielt eine wichtige Rolle. Wie groß die Unterschiede allein bei den Flossen sind, zeigt sich schon an den von Leistungssportlern verwendeten speziellen Wettkampfflossen (Zamparao et al. 2006). Aus dem Gedanken für sich und seinen Partner ein höchstes Maß an Sicherheit zu gewährleisten, wird heute fast ausschließlich nur noch mit redundanten Systemen getaucht. Dabei steigt der Strömungswiderstand durch die größere Angriffsfläche was zur Folge hat, dass der Taucher in einer Notsituation eine größere Leistung vollbringen muss. Der Wasserwiderstand der verwendeten Tauchausrüstung an sich ist zu betrachten. Der Ansatz durch eine entsprechende körperliche Fitness für Sicherheit zu sorgen wird dabei gerne verdrängt. Es ist bewiesen und plausibel, dass ein vollständig ausgerüsteter Taucher deutlich höhere Schwimmwiderstände hat (Passmore 2002).

Die beschriebenen Situationen werden sich auch durch eine noch so gute Planung nie ganz vermeiden lassen. Die Leistungsfähigkeit beim Sporttauchen stellt damit einen wesentlichen Sicherheitsfaktor im Tauchsport dar (Hoffmann et al. 2002).

Die erlangten Erkenntnisse könnten so einmal in die Tauchausbildung einfliessen und des Weiteren die Ausrüstungskonfiguration entsprechend positiv beeinflussen. Ein Ansatz, diese besondere Gefahrensituation besser abzuschätzen und weiterführende Fragestellung zu beantworten, liegt in der Entwicklung eines sportartspezifischen Messsystems.
7. Zusammenfassung

Literaturverzeichnis

Bartmann, H.: Taucherhandbuch. Landsberg, 2002

CEN TC 79/ EN 14143 : Respiratory equipment – Self-contained rebreathing diving apparatus, 2002

De Marées H.: Sportphysiologie 9 Aufl., Köln Sport und Buch Strauss, 2002

Meerloo, A., Collis, M., Backus, R., Wenger, H.: The prediction of thered swimming from VO₂ max on a biokinetic swim bench. J. Swimming Research, 4, (2), 1988

Literaturverzeichnis

Siemens, Instruction for use: Uni- and Bipolar Hall IC Switches for Magnetic Field Applications, TLE 4905 L; TLE 4935 L., 1997

Abbildungsverzeichnis

Abb. 1:
Vereinfachte Darstellung eines offenen Tauchgeräts 8

Abb. 2:
Funktionsprinzip eines halbgeschlossenen Kreislaufgeräts 10

Abb. 3:
Schwimmbrett, Aluminiumgehäuse mit drei Magnetschaltern. Im wasserdichten Gehäuse, befinden sich der Datenlogger (Tattle, 520) und der HF-Empfänger 15

Abb. 4:
Impeller an der Unterseite des Schwimmbretts 16

Abb. 5:
Draufsicht auf das Schwimmbrett, mit der Position des HF-Empfängers, LED Dioden und Display. Am unteren Rand drei Magnetschalter. 18

Abb. 6:
Präzisionsdrucksensor (PDCR 900) verbunden über ein Kabel, mit zwischengeschaltetem Signalverstärker zum Schwimmbrett. 21

Abb. 7:
Abnahmepunkt im Walzenschieber des Mundstücks (siehe Pfeil) 22

Abb. 8:
Abnahmepunkte der Sensoren in den Atemschläuchen. Für die Druckmessung im Mundstück, wurde jeweils der Abnahmepunkt S_0 bzw. S_1 auf Brustbeinhöhe zur Referenzmessung fixiert. 23

Abb. 9:
Δp wurde jeweils für die inspiratorische (Δp_i) und exspiratorische (Δp_e) Seite gemessen. Im Mundstück sind die Richtungsventile dargestellt, welche eine Gasflussrichtung in Pfeil Richtung ermöglichen. 23
Abbildungsverzeichnis

Abb. 10: Darstellung der Abnahmepunkte für den Atemwiderstand nach EN 14143 im Mündstück und auf Brustbeinhöhe 24
Abb. 11: Anordnung der Sensoren und des Akkublocks im SMT 7000 Gehäuse (zu Demonstrationszwecken ohne Abdeckung) 26
Abb. 12: Druck-Volumen Diagramm. Kolbenhubversuch mit 1l Kolben, in 1,4 m Wassertiefe 29
Abb. 13: Druck-Volumen Atemhalbschleifen einer Inspirationsphase. Kolbenhubversuch mit 1l Kolben, in 4,5m Wassertiefe 30
Abb. 14: Taucher mit Schwimmbrett 34
Abb. 15: HF[min⁻¹] eines Probanden (ID 8) bei einem Zwei-Stufentest 36
Abb. 16: Mittlere HF [min⁻¹] jeder Minute bei einem Zwei-Stufentest (Probanden ID 3-8), n=6 36
Abb. 17: Mittlere Herzfrequenz [min⁻¹] und VO₂ [l min⁻¹] im Verhältnis zur Soll-Schwimmgeschwindigkeit von 0,4 u. 0,6 [m s⁻¹] 37
Abb. 18: Mittelwerte von VO₂, HF und ν, letzte Minute zweite Stufe für alle Probanden 38
Abb. 19: Proband 1: Druck-Volumen Diagramm bei 0,4 [m·s⁻¹], Tiefe 4 [m], Überdruckventil bei 32 [mbar] 41
Abb. 20: Proband 1: Druck-Volumen Diagramm bei 0,6 [m s⁻¹], Tiefe 4,5 [m], Überdruckventil bei 32 [mbar] 41

Abb. 22: Vergleich der erreichten VO₂ Werte von SMT und Dolphin

Abb. 23: Entwurf der Schleppboje „Arcas“

Abb. 24: Schleppboje mit Propeller am Ende der Boje

Abb. 25: Drei eingegossene Miniatur LED welche am rechten oberen Maskenrand befestigt werden ergeben eine Art HUD.

Abb. 26: MT 25 (rechts) mit angeschlossener Schleppboje (links)
Tabellenverzeichnis

Tab. 1: Anthropometrische Daten der Probanden für die HF und VO\textsubscript{2} Messung 30

Tab. 2: Anthropometrische Daten der Probanden für die Atemwiderstands- und Ventilationsmessung 31

Tab. 3: Mittlere in- und exspiratorische Volumina (V\text sub{ex}, V\text sub{in}) und Mittelwerte der positiven und negativen Drücke während der Exspirations- und Inspirationsphase, für zwei Atemzüge in den letzten 10 s der ersten Teststufe (n=5) 40

Tab. 4: Mittlere in- und exspiratorische Volumina (V\text sub{ex}, V\text sub{in}) und Mittelwerte der positiven und negativen Drücke während der Exspirations- und Inspirationsphase, für zwei Atemzüge in den letzten 10 s der zweiten Teststufe (n=5) 40

Tab. 5: Mittelwerte des Atemzugvolumens für Exspirations- und Inspirationsphase von 5 Probanden 42
Lebenslauf

Persönliche Daten:
Name: Tobias Dräger
Geboren: 26.06.70 in Göttingen
Familienstand: ledig

Schulausbildung:
1990 Integrierte Gesamtschule Göttingen
Abitur

Zivildienst:
1990-1991 Hainbergklinik Göttingen

Studium:
1993 Beginn des Studiums der Biologie in Göttingen
1994 Einschreibung für Sportwissenschaften
1995 Wechsel an die Deutsche Sporthochschule Köln /Schwerpunkte: Sportmarketing/
Sportverwaltung und Leistungsdiagnostik
1996 Vordiplom
1999 Abschluss Dipl. Sportwiss.

Beruflicher Werdegang:
1999- 2001 Produktmanager, Dräger
Sicherheitstechnik, Marktteam DrägerDive
seit 2002 Wissenschaftlicher Mitarbeiter im Institut für
Physiologie und Anatomie der DSHS
Danksagung

Ich möchte mich sehr herzlich bei meinen Doktorvater Herrn Prof. Dr. Dr. Dieter Eßfeld für die Betreuung während meiner Promotionszeit bedanken. Seine kritischen, konstruktiven Diskussionsanregungen halfen mir außerordentlich gerade in der Endphase der Arbeit.

Besonderer Dank gilt Hr. Dr. Uwe Hoffmann für die Möglichkeit der Durchführung dieser Studie, sowie für die immer sehr angenehme Zusammenarbeit. Seine tatkräftige Unterstützung, sein fortwährendes Interesse und Mitbetreuung waren immer eine große Hilfe.

Darüber hinaus möchte ich hier Hr. Martin Küsel erwähnen, für die tolle Unterstützung der Feinmechanischen Werkstatt der DSHS. Außerdem danke ich Marc, Ansgar und Steffen, was hätte ich bloß ohne die kreativen Kaffeepausen gemacht.

Schließlich möchte ich mich ganz herzlich bei meinen Eltern und meinem Bruder bedanken, die mir bei meinem bisherigen Werdegang immer zur Seite gestanden haben.
A new measuring system was developed and utilised to examine scuba divers underwater, thus a specific field test was applied for the first time. As yet no special test of performance capacity exists that takes into account the particular environmental conditions of diving. Classic standardised procedures such as bicycle ergometer tests only provide an assessment of general physical performance levels (Steinbach et al. 1985, Bräuer et al. 1994). The present system informs the diver about the desired and actual speed and it allows to measure and record several parameters. Field tests were performed in 14 subjects. Heart rate (HR), oxygen uptake (VO₂), ventilation and airway resistance were recorded by use of a closed circuit diving apparatus. HR and VO₂ during swim tests were recorded in 5 subjects. Ventilation and airway resistance were determined in further test runs (n=9). During the tests some technical drawbacks of the original approach could be eliminated. Towed buoy and a head up display further improve the system. While the pivotal determination of swim speed is limited by the technical devices presently available, the quantification of ventilation can be improved by using pressure independent measurements. The developed measuring system and the applied methods delivered useful data and turned out to be practible. Therefore, it can be used for field test purposes.